ARMY RESEARCH LABORATORY

Development and Testing of an
Interface for Real-Time Visualization
of Resin Flow in Composites

by William Green, Dale Shires,
-and Shawn Walsh

ARL-TR-1784 September 1998

2
sl
-
O
S
3
e

Approved for public release; distribution is unlimited.

Reproduced From
Best Available Copy




The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturer’s or trade names does not constitute an
official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return
it to the originator.



Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5069

ARL-TR-1784 September 1998

Development and Testing of an
Interface for Real-Time Visualization
of Resin Flow in Composites

William Green, Dale Shires, Shawn Walsh
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.
L —

1]




Abstract

The manufacture of polymer composite materials has benefited greatly from the development
of computer-based simulation tools and sensor-based instrumentation. The present research
offers a unique and powerful interface for collecting, integrating, analyzing, and rendering
critical data related to a dynamic composite manufacturing: process: These operations are
executed in real time over the internet, permitting unprecedented flexibility and speed in
deploying and using the manufacturing "tools." These tools include, but are not limited to, resin
flow sensors, a model-based resin-flow reconstruction procedure, and a user friendly display for
remotely manipulating and monitoring composite process events. The interface developed herein
is critical not only in improving the fundamental visualization of a process but also as a means
of practically communicating process information between geographically distinct locations.
Thus, manufacturing concerns with only modest computer infrastructure can remotely leverage
these tools to improve the quality, performance, and cost of their products without the need for
significant investment in high performance computing infrastructure.
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1 Introduction

Composite materials are increasingly being used in Army combat systems. They offer
strength, are lightweight, and as such are faster to deploy. Composite parts provide excellent
protection from projectiles due to their energy-dispersing characteristics. Thick composites,
in which additional protective materials such as ceramic plates can be placed, provide even .
better protection. An interesting ability with composites is that “in-situ” sensors can be in-
corporated into a composite part during its manufacture. These types of sensors can be used
to monitor manufacturing processes while having little or no effect on final. mechanical and
structural properties. Sensors can indicate or delineate different phases of a manufacturing
process and determine when the process is complete. Sensors remaining in a composite part
after manufacture can also be used for health monitoring of the part over its lifetime. There
is also currently an emphasis on the creation of “intelligent” or “smart” composite structures.
Sensors in smart structures would provide data to be applied for controlling the manufac-
turing process. The development of smart structures addresses the lack of consistency and
uniformity in composite part manufacturing today.

Liquid composite molding (LCM) processes such as resin transfer molding (RTM) and
- structural reaction injection molding (SRIM) are high-potential manufacturing methods for
fabricating high-strength, high-volume composite parts. In general, a fiber preform is placed
inside a matched-die mold and a reactive liquid resin is injected into the mold cavity through
a number of ports into porous areas of the preform. A number of vents are also put into the
mold cavity to prevent excessive pressures and help guide the resin flow.

However, composite parts are still generally cured in autoclaves, ovens, or presses using
empirically based “recipe” cures. The variability in batch-processed raw materials, degra-
dation during shelf life and out time, and environmental factors such as temperature and
humidity can rarely be accounted for with the use of recipe cures. As a result, recipe cures
usually require a high degree of post fabrication inspection and frequently produce less than
optimum parts. They also have the potential to yield very high levels of scrap, especially for
complicated geometries. In order to offset this to some degree, recipe cures are conservatively
designed to maximize polymerization. This results in an unnecessary increase in process cy-
cle time, inefficient equipment utilization, shorter tool life, and inflated processing costs.
Most previous attempts to solve the problems inherent in recipe cures have concentrated on
reducing batch-to-batch variations in raw materials and preproduction “proof” processing
to accommodate those variations. This approach has been only moderately successful and
not optimally cost effective.

Certainly a more practical and elegant approach that would overcome these problems
would be to create a monitoring and control methodology that would be capable of assessing
and subsequently modifying the actual condition of the material in real time or near real
time as it is being processed. This methodology must acquire data that are indicative of
where the flowing resin is in relation to the ports and vents in the mold cavity. Optimally,
the actual location of the flow front would be determinable from the data. Current studies
of multiregional flow in LCM processes do not determine actual flow front location using



real time sensor data during the process [1, 2, 3]. Another valuable flow state variable to
know is flow front velocity, since location, speed, and direction would fully describe flow
in the immediate future. Both the acquisition of data and reconstruction of the flow must
be completed in a short time relative to the speed of the flow front. However, assuming
that data acquisition and reconstruction of the flow is fast enough, the flow must still be
quickly and accurately visualized. Furthermore, the location of the flow front must be easily
‘interpretable from the visualization without requiring any detailed knowledge of the acqui-
sition, reconstruction, and visualization methodology. This requires a robust combination
of data acquisition, data analysis, and data visualization techniques to, produce a fast and
easily understood tool. Furthermore, to perform process control, the visualization tool must
quickly respond to analysis results to modify flow parameters, e.g., port injection pressure,
activation/shut off of injectors, etc.

In this report we describe the development of a visualization tool used to monitor and dis-
play the resin flow during fabrication of organic matrix composite laminates. The tool uses
dynamic sensor data generated during part manufacture and was developed around a flexible
and powerful scientific visualization framework. The successful integration of network-based
data acquisition, fast finite element based reconstruction (smoothing) and contouring al-
gorithms, and scientific visualization tools are described. The results of using the tool to
visualize flow during fabrication of laminates, including flat panels and more complex parts,
are discussed.

2 Developing a Visualization Tool

2.1 Data Acquisition

The U.S. Army Research Laboratory has de- SMARTWeave 2-D Grid (7x7)
veloped a system known as SMARTweave (Sen-
sors Mounted As Roving Threads) [4, 5, 6].

This is a novel approach of creating sensors by
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weaving flexible conductive fiber tows through -
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composite preforms. Generally, a set of parallel T oaaoms €
tows is placed between two preform layers. A N~ g
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second set of parallel tows is placed at about 90°
to the first set between different layers of pre-
form material. Sets of tows are placed between
different preform layers to prevent them from
coming in contact with each other. These tows
are then multiplexed with low-voltage electri- Figure 1: A SMARTweave 7 x 7 Sensor
cal current being applied to one set of tows and Qrid.

sensing by voltage measurement being performed on the other set of tows. Basically, a sensor
grid is formed in which sensor locations are where tows overlap one another. For example,
a7 x 7 grid would yield 49 sensor locations as shown in Figure 1.
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This type of setup is easily applied to simple preform shapes, such as relatively thin,
flat panels. However, any number of tows or sets of tows in any orientation relative to each
other can be placed in a composite preform. This is limited by the size and geometry of the
preform itself and not by the size or geometry of the sensor tows. This means sensor grids
can be placed throughout a preform of any thickness. Therefore, sensor grids can be placed
in any part of a preform, including curved sections and around corners from one plane of the
part to another. This gives the SMARTweave system high flexibility and wide applicability.

The SMARTweave system has the potential to collect data from any position in a com-
posite preform and thus determine the current location of the global flow front. Early devel-
opments in the SMARTweave system produced a simple yet effective monitoring system. The
multiplexed data collected at the grid overlap points, or sensor locations, are interpreted by
customized National Instruments LabVIEW software running on a personal computer (PC).
Based on predetermined thresholds, voltages at the sensors were indicative of whether or
not resin had filled the sensor. The user was presented a graphical, two-dimensional (2D)
representation of the preform that was colored based on voltage readings from the sensors
or whether or not voltage thresholds had been exceeded. However, this visualization tool
was constrained in two ways. First, only 2D cases could be fully visualized, and second, the
2D representation was constructed using rectangles delimited by the grid tows. This always
produced a flow front with 90° steps as shown in Figure 2. Of course, more tows could be

Figure 2: Early Visualization Interface.

added to decrease this effect, but a great advantage of the SMARTweave system is that flow
can be determined where there are no sensors by analyzing sparse sensor data. Flow in these
areas could not be accurately shown with the “blocky” output from the early, PC-based,
visualization tool. Also, adding more tows becomes impractical at a certain point.

The SMARTweave system is designed to be inexpensive and is taken “on the road”
to perform analysis and gather data quickly. In order to visualize three-dimensional (3D)
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experiments, a method was developed to transfer the data from the monitoring computer
to a Silicon Graphics Incorporated (SGI) workstation in near real time. The SGI computer
system was chosen for several reasons. Most importantly, the SGI has graphics hardware
and software that allows users to easily render and manipulate 3D objects. This is done
using Open Inventor, which is an object-oriented 3D toolkit based on Open GL (Graphics
Library)[7]). Open GL is the interface by which the graphics hardware is controlled. Secondly,
the OSF/Motif (Open Software Foundation) programming toolkit, which is built on top of
the X11 code used for the UNIX windows environment on the SGI, is used to implement user
interface components, such as menus, scroll bars, message boxes, and buttons. Mechanisms
exist that incorporate the Motif and X11 components with the Open Inventor components.

Remote acquisition of process or laboratory data in real time or near real time is a
powerful application that Internet access provides [8]. Routines were written on the PC
and on the SGI to allow communication between the two existing TCP/IP (Transmission
Control Protocol/Internet Protocol) network channels. The LabVIEW software on the PC
has routines specifically for TCP/IP network communication. These routines were used to
allow the PC user to input the internet address of the SGI workstation and the port to
which it should connect. The PC then collects data at user set intervals and sends bursts
of data over the network to the SGI workstation. The SGI workstation could have been
used as the data acquisition device. However, an effective and highly portable PC-based
data monitoring system existed, allowing dedication of the SGI to data analysis and flow
rendering. The PC was fitted with a network card. Code was written for the SGI that allows
the user to specify a TCP/IP socket which will act as a listener. This is done in the SGI user
interface for the SMARTweave monitoring system. Most workstations in the SGI family are
network-ready. This system of data acquisition and transfer has two advantages. It does not
require specialized connectors to interface the two computers, and it allows for distributed
data collection and visualization.

2.2 Reconstructing the Flow Front

Any number of sensors can be created in the SMARTweave system. However, it is desirable to
use as few sensors as possible to collect data without losing information necessary for correctly
determining flow front location. Currently, the capability exists to visualize sensor activity
in near real time. Sensor points are turned on when they are filled as resin flows through the
preform. However, we also want to know where the flow front is between the sensor points.
Off-line capability has been developed to quickly reconstruct the flow front based on sensor
locations and sensor activation (on) times [9]. In the 2D case, the reconstruction (smoothing)
algorithm uses a triangular, quadratic, and computationally efficient element possessing 9
degrees-of-freedom (DOF) to locate the flow front in time based on a finite element model.
The response of this particular smoothing element (in finite element notation) is dictated by
three separate components and can be summarized as

[KeHu} = (K] + (K] + [KED{w} = {f°}, (1)



where K., K,, and Kz symbolically represent the contributions of least-square error, gradi-
ent control, and curvature constraint, respectively, and u® represents the nodal DOF. The
interpolation function U® within an element is written

U® = [NHu*}, (2)

where [N] are the element shape functions. The function U® is related to the piecewise
representation of the smooth function U(x, y), defined in region 2, contained in Euclidean
2D space, by
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where N, is the number of finite elements, N§ is the number of data points falling within
an element’s space, u; = u(z;,y;) is an arbitrary representative data set, and U®, 6, and b;
are functions restricted to an element’s domain. The data weighting constant, derivative, or
gradient constraint constant, and the curvature constraint constant are represented by w, a,
and 3, respectively. In this case, the data set u; is time. An expression for K., K,, K3, and
f¢ results from the minimization of functional equation (3) with respect to the nodal DOF,
& =0, and combination with equation (2). Further description of the mathematical model
is available [9].

The algorithm determines the time solution for every node in the finite element model
given the times sensors are activated. Thus, sparse data from a small number of sensors are
analyzed to get data over the entire finite element model, which gives the resin flow front
at discrete time intervals. Some elements will have all their nodes in the filled (on) state,
some will have all their nodes in the unfilled (off) state, and some will have only one or two
nodes in the filled state. Any element that has only one or two nodes on is considered to be
partially filled with resin. A linear first approximation contouring methodology was used to
determine what areas of partially filled elements should be considered filled. Contouring is
generally not necessary for a relatively fine finite element mesh. However, since contouring
is only applied to partial (filled) elements, it is only applied along the flow front. Contouring
a relatively small number of partial elements can take less time than smoothing a very fine
mesh in order to avoid contouring, since solving for such a mesh can be computationally
intensive.

Consider the meshes shown in Figure 3. Figure 3(a) is a 2D finite element mesh, or grid,
with the flow front moving from left to right. Figure 3(b) is the same grid with four-element
refinement applied to the partial elements along the flow front. Four-element refinement is
the process of creating four new elements that collectively describe the same area in space
as the partial element they temporarily replace such that the flow front is delineated, or
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(a) Front moves left to (b) Four element refine- (c) Front progression
right. ment applied. with refinement.

Figure 3: “Coarse” 2D Finite Element Mesh With Moving Flow Front.

contoured, in the area of the partial element. The flow front is contoured in the partial
element because each temporary new element is either completely in the flow region or
completely out of the flow region. Figure 3(c) shows four-element refinement applied to the
flow front later in time. The 12 elements down the middle of the grid have been reset to their
original size and their original position. These elements have gone from partial elements to
filled elements, whereas the 12 elements to their right have gone from empty elements to
partial elements. As the flow front moves through the grid, nodes and elements are added
and removed from it as necessary to contour partial elements.

Figure 4 shows a “fine” finite element mesh. Figure 4(a) is a refined grid with the flow
front moving from left to right. Figure 4(b) is the same grid with elements repositioned
along the flow front, but no further refinement. Nine elements are dynamically replaced
with 36 elements in Figures 3(b) and 3(c). An original finer mesh is used in Figures 4(a)
and 4(b) with simple element repositioning by node relocation. In order to use as coarse a
grid as possible and minimize processing time, Dynamic Mesh Refinement (DMR) as shown
in Figures 3(b) and 3(c) was used for flow front contouring.

2.3 Developing the Visualization Interface

Visualization and modeling in various areas of industry and research (e.g., textile materials,
satellite images, virtual environments, etc.) is becoming increasingly important [10, 11, 12].
Realistic and accurate representation of objects or images is often necessary to meet design
or system requirements. Open Inventor is designed to create and display 3D objects. All
of the information about an object, such as its size, position, color, etc. is stored in a data
structure known as a scene database. This scene database is visually similar to a tree
structure. When the scene database, or scene graph, is displayed or rendered, it is traversed
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(a) Front moves left to right. (b) Element repositioning by
node relocation.

Figure 4: “Fine” Finite Element Mesh With Moving Flow Front.

top-down, left-to-right. For any object, the design is logical and can be easily understood by
traversing the scene graph. Finite element mesh geometry of an object can be formatted into
an Open Inventor scene graph. The flow visualization interface quickly reads and formats a
NASTRAN (finite element) file into an Open Inventor scene graph, which renders the object
described by the file. However, any data file specifying nodes and nodal connectivity can
be used [13]. The NASTRAN file is generated from Parametric Technology Corporation
Pro/ENGINEER computer-aided design (CAD) software. The same finite element mesh
used for rendering the object is used for smoothing and contouring, and also for performing
flow simulations. Thus, the mesh should not be made too fine or too coarse. If the mesh is
too fine, it results in slow rendering and contouring, but very good simulations. If the mesh
is too coarse, it results in bad simulations, but fast rendering and contouring.

The time to complete smoothing, contouring, and rendering tasks must be small relative
to the speed of the flow front in order to accurately display the flow front when new sensor
data are received. If the computation time required to complete these tasks is too large the
displayed flow front will lag in time behind the actual flow front. The visualization interface
allows the user to turn off smoothing and contouring in order to view the sensor state only.
The interface can also apply only smoothing to sensor data. In this case, the time solution
for each node in the mesh is compared to the current time and any node with time less
than or equal to the current time is a filled node. The interface uses color shading around
nodes to distinguish between filled and empty nodes. However, shading by node gives the
flow front a step-like, unsharp edge. This method gave better results than the PC-based
“blocky” display, but still did not clearly delineate the flow front. An example of this is
shown in Figure 5.

As can be seen in the figure, active sensors are displayed in white and unactivated sensors



Figure 5: “Blocky” Effects From Coloring by Node.

are shown in black. Resin-filled areas are shown in dark gray and void areas are shown in
a lighter gray. Notice that the flow front is “fuzzy.” There is no clear defining line for the
resin front. These results provided the impetus to develop element shading with DMR for
contouring, which gives the flow front a well-defined edge without step-like contours between
nodes. This approach shows the entire flow. An approach was also developed to show only
the flow front, in which nodes on the front are marked by spheres and connected using
straight-line segments. Results from these methods are shown in the following section.

3 Flow Visualization - Case Studies

3.1 Flat Panels

IR A B A R
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Figure 6: Experimental Flat Panel With
16 x 16 Sensor Grid.
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The SGI visualization interface was first ap-
plied to monitoring flow in flat panels fabri-
cated using the Seemann Composite Resin Infu-
sion Molding Process (SCRIMP) [14]. SCRIMP
uses a resin distribution system so that pre-
forms with very large surface areas can be im-
pregnated by vacuum force alone. This resin
distribution system usually consists of a high-
permeable medium placed between the fiber
preform and the mold surface. It can also be
augmented with grooves cut in the core or the
mold. Using SCRIMP allowed testing of the vi-
sualization interface quickly and easily without

requiring use of an autoclave. The process also allows the flow fronts to be visually tracked.



Figure 6 shows a flat panel with a 16 x 16 sensor grid. Sensor locations are delineated by
the dark spheres coincident with the panel.

The panel was impregnated with resin (simulated with colored corn syrup) from the
center. The center is marked by the small diamond-shaped hole. Figure 7 shows several
rendering abilities of the scientific visualization system. Figure 7(a) shows the sensor data
when the panel was about half filled with resin. Sensors that are on are colored white,
and sensors that are off are colored black. Figure 7(b) shows the same sensor state with
both reconstruction and contouring applied. The flow has been shaded by element (shown
in white), and the flow front is well defined by using DMR. Figure 7(c) is the same flow
showing only the flow front where DMR has been used.

(a) Sensor activation only. (b) Sensor activation, reconstruction, and
contouring.

(c) Sensor activation and flow front.

Figure 7: Flat Panel Experiments and Visualization.



Figure 8 is a video image snapshot of flow in the panel correlated in time with Figures
7(b) and 7(c). The flow in Figures 7(b), 7(c), and 8 is in very good agreement. It is very
easy to apply reconstruction (for flow front rendering) only, reconstruction and contouring,
or neither to sensor data in the visualization interface. Making the choice simply involves
choosing a menu item from a list. This gives the user maximum flexibility in choosing how
to visualize the flow and the flow front.

Figure 8: Video Image of Flat Panel Experiment.

3.2 Gun Mount Shield

The interface was also used to monitor flow in a much more complex composite part, the
XM194 Gun Mount Shield, hereafter referred to as the ballistic shield. Again, SCRIMP was
used to fabricate a thinner version of the full thickness ballistic shield. The actual ballistic
shield part, in this case after some ballistic damage tests, is shown in Figure 9.

Tows were placed from front to back and from side to side across the top of the shield
to form sensor grids. A total of six planar sensor grids were created, including one in the
top, one in the back, one in each side, and two in the front. The PC visualization tool could
only display one sensor grid at a time out of six possible grids. The SGI visualization tool
continuously displays the entire ballistic shield, treating the shield as a single object with a
set of properties to be rendered. Second, the SGI tool allows the user to move or spin the
shield in space in order to view it from any angle.

The shield was impregnated with resin from the center of the back at the top. Figure
10(a) shows the sensor state after flow has proceeded through the top and into the front,
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Figure 9: Ballistic Shield.




sides, and back of the shield. Sensors that are on are colored white, and sensors that are
off are still colored black. Figure 10(b) shows the reconstructed and contoured flow for the
sensor state, in which flow is shaded by element using DMR. Last, Figure 11 is a video image
snapshot of flow in the shield correlated in time with Figures 10(a) and 10(b). Again, the
flow in Figures 10(b) and 11 is in good agreement. This includes flow through edges and
corners from one area of the shield to another. This is critical as effects like race tracking
can occur along edges. The presence of race tracking often results in dry spot formation and
other defects in molded composite parts [15].

The SGI visualization interface successfully monitored resin flow in a simple panel and the
significantly more complex ballistic shield. It produced accurate flow reconstruction results,
which when shaded by element and contoured using dynamic mesh refinement resulted in
well defined flow front boundaries.

4 Future Directions

Resin flow in the flat panel and the ballistic shield was visualized in quasi-3D, in which flow
is constrained in surfaces with no thickness. However, the 2D reconstruction algorithm is
a simplification of the more general 3D case, which can reconstruct the flow front in full
3D. Visualization is significantly more difficult in full 3D, as individual faces of 3D elements
with thickness will be shaded to produce an expanding “hollow solid” or shell representing
the flow front, rather than filling of entire 3D elements. Of course, visualization in full
3D is necessary to show the flow front everywhere and not just near the surfaces, in thick
composites. In the full 3D case, a tetrahedral finite element mesh and the 3D reconstruction
algorithm would be used. The 3D algorithm would construct dynamic tetrahedral elements,
which would be interrogated to determine what face(s) should be shaded for display.

Using the visualization interface to control the manufacturing processes for composites
fabrication will be investigated in the near future as an appropriate control decision mecha-
nism is added. The reconstruction algorithm solves for the time solution of every mesh node
given the current sensor grid state. In addition, the algorithm can solve for the velocity at
every mesh node. Knowledge of where the flow is (time) and where it is going (velocity)
can be combined and utilized by some form of intelligent control. Control may be based
on statistical methods, heuristic algorithms, neural networks or other artificial intelligence
algorithms, or some other method.

Current work in RTM flow simulations has addressed designing and developing easy-to-
use graphical interfaces for interactively changing simulation variables (e.g., number/location
of ports and vents, open/close ports and vents, etc.) during the simulation {16]. The U.S.
Army Research Laboratory, along with the Mechanical Engineering Department at the Uni-
versity of Minnesota, has developed a pure finite element methodology for RTM flow simu-
lations {17, 18, 19]. It is based on the transient mass balance equation for the resin mass in
conjunction with an implicit filling technique that provides solutions for both the pressure
field as well as the resin front progression. Compared to the explicit Finite Element-Control
Volume (FE-CV) methodologies used in other approaches, the new methodology developed

12



(a) Sensor activation only.

(b) Sensor activation, reconstruction, and contouring.

Figure 10: Ballistic Shield Experiments and Visualization.
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Figure 11: Photo of In-Process Ballistic Shield Manufacture.

is faster and is more physically accurate. By using the SGI computer system with custom-
built interfaces from X11/Motif and Open Inventor, the simulation tool is quick and easy
to interact with and provides robust 3D graphics rendering. The capability to graphically
animate simulation results has also been developed. Currently, the flow front reconstruction
methodology and the simulation methodology, including animation, exist as separate appli-
cations. Another area of future investigation is the combination of the two methodologies
in the SGI visualization interface for monitoring and flow front reconstruction/contouring.
An animated simulation could be shown side by side with contoured real-time data. The
simulation would continue in time step with the acquisition and reconstruction of actual
data, showing how, if at all, one differs from the other. Simulation results can also be incor-
porated with the dynamic contouring (DMR) routines to provide data in areas relatively far
from the flow. This would allow a simulation to guide the flow reconstruction early in time
when there is relatively little sensor data, but become less dominant as more sensor data is
received until finally the simulation is dominated by the sensor data.

5 Conclusions

The U.S. Army Research Laboratory has developed an SGI-based graphical visualization
tool for monitoring and displaying resin flow in near real time in composites fabrication.
It receives data over the internet from a data acquisition PC via TCP/IP routines on the
PC and a network listener on the SGI. The tool uses a fast 2D reconstruction algorithm to
locate the flow front in time based on a finite element model. Second, the tool can apply a
contouring algorithm with dynamic mesh refinement to the flow front. Writing the tool in
Open Inventor resulted in an easy-to-use-and-understand 3D graphical interface in which an

14



object described by a finite element mesh and the flow in the object are completely rendered.

Two different experiments were done to test the speed and accuracy of the visualization
tool. In the first, resin flow in a flat panel was monitored and displayed (rendered) by the
tool. There was good agreement between the actual flow front as recorded by video camera,
the reconstructed flow front, and the reconstructed and contoured flow. In the second, resin
flow in a thin version of the XM194 Gun Mount Shield was monitored and rendered by the
tool. Again, there was good agreement between the actual flow front as recorded by video
camera, the reconstructed flow front, and the reconstructed and contoured flow, including
through edges from one plane of the shield to another.

Future work includes visualization of the flow front in full-3D, in which individual faces
of 3D elements with thickness will be shaded to produce an expanding “hollow solid” or shell
representing the flow front, rather than filling of entire 3D elements. Developing a control
methodology based on the location (time) and the direction (velocity) of the flow front will
also be investigated. Last, combining existing simulation methodology with the visualization
tool will be investigated.
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